Altissima: Contoh soal Hots tentang Persamaan garis singgung persekutuan lingkaran

Kamis, 27 Januari 2022

Contoh soal Hots tentang Persamaan garis singgung persekutuan lingkaran

  1. Lingkaran I dan lingkaran II masing-masing titik pusatnya terletak di titik O dan titik P. Kedua lingkaran tersebut berada dalam kedudukan terpisah satu dengan yang lainnya.  Garis dan garis l adalah garis singgung persekutuan luar kedua lingkaran tersebut. Garis k menyinggung lingkaran I di titik A dan menyinggung lingkaran II di titik B. Garis l menyinggung lingkaran I di titik D dan menyinggung lingkaran II di titik C. Selain itu garis m dan garis n adalah garis singgung persekutuan dalam kedua lingkaran tersebut. Garis m memotong garis k dan garis l masing-masing di titik V dan di titik W. Garis n memotong garis k dan l di titik X dan di titik Y.

    Tunjukan bahwa AB = CD = VW = XY




    jawab:         

    perhatikan gambar berikut ini:|


    Jika kita membuat perpanjangan garis k dan garis l sedemikian sehingga berpotongan pada titik H, maka akan kita dapatkan
                                                          AB = AH - BH
                                                          CD = DH - CH

    Tetapi berdasarkan sifat garis singgung lingkaran yang berpotongan di luar lingkaran didapat
                                                          AH = DH
                                                          BH = CH
    Akibatnya
                                                       AB = AH - BH
                                                       AB = DH - CH = CD ..... persamaan 1

    Kemudian, misalkan titik Q, R, S, dan T masing-masing merupakan titik singgung garis persekutuan dalam lingkaran dan U adalah titik potong garis singgung persekutuan dalam tersebut seperti pada gambar berikut ini:



    Nampak pada gambar  bahwa 
                 CD = CY + YD
                 QY = YS +  QS

    Tetapi berdasarkan sifat dua garis singgung yang berpotongan di luar lingkaran kita tahu bahwa :
                 CY  = YS
                 YD = QY

    Oleh karena itu 
                  CD = CY + YD = YS + QY = YS + (YS + SQ) = 2 YS + QS ...... persamaan 2

    Selain itu pada gambar nampak:
                  AB = AX + XB
                  XS = XQ + QS

    berdasarkan sifat dua garis singgung yang berpotongan di luar lingkaran kita tahu bahwa :
                  XS = XB
                  AX = XQ

    Oleh karena itu didapat :
                 AB = AX + XB = XQ + XS = XQ + (XQ + QS) = 2 XQ + QS ,,,,,,,, persamaan 3

    Karena AB = CD maka dari persamaan 2 dan persamaan 3 diperoleh
                AB = CD
    2 YS + QS = 2 XQ + QS
           YS      =        XQ   ........ persamaan 4

    dari persamaan 1, persamaan 2 dan persamaan 4 

                        AB = CD = YD + CY = QY + YS = YQ + XQ = XY

    Dengan demikian telah ditunjukan bahwa AB = CD = XY.

    Sekarang, dengan analogi yang sama kita juga dapat menunjukan bahwa AB = CD = VW, yakni 

    Nampak pada gambar  bahwa 
                 CD = WD + CW
                 RW = WT +  TR
    Tetapi berdasarkan sifat dua garis singgung yang berpotongan di luar lingkaran kita tahu bahwa :
                 WD  = WT
                 RW  = CW

    Oleh karena itu 
                  CD = WD + CW = WT + RW = WT + (WT + TR) = 2 WT + TR ...... persamaan 5

    Selain itu pada gambar nampak:
                  AB = AV + VB
                  VT = VR + TR

    berdasarkan sifat dua garis singgung yang berpotongan di luar lingkaran kita tahu bahwa :
                  VT = AV
                  VB = VR

    Oleh karena itu didapat :
                 AB = AV + VB = VT + VR = (VR +TR)+ VR = 2 VR + TR ,,,,,,,, persamaan 6

    Karena AB = CD maka dari persamaan 5 dan persamaan 6 diperoleh
                AB = CD
    2 VR + TR = 2 WT + TR
           VR      =        WT   ........ persamaan 7

    dari persamaan 1, persamaan 5 dan persamaan 7 

                        AB = CD = WD + CY = WT + RW = VR + RW = VW

    Dengan demikian telah ditunjukan bahwa AB = CD = VW

    Karena AB = CD = XY dan AB = CD = VW maka berlaku AB = CD = VW = XY


==== Good Luck ====






Tidak ada komentar:

Posting Komentar

Postingan lainnya

Aplikasi teori limit dalam menghitung Laju perubahan sesaat

Perubahan Rata-rata dan Perubahan Sesaat Sejauh ini kita telah mempelajari mengenai konsep dasar limit dan beberapa teorema di dalamnya. Pad...